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Abstract 
Researchers in second language (L2) learning typically regard “statistical significance” as a 
benchmark of success for an experiment. However, because this statistic indicates nothing more 
than the probability of data sets occurring given the essentially impossible condition that the null 
hypothesis is true, it confers little of practical or theoretical importance. Significance is also the 
source of widespread misinterpretation, including confusion of significance with effect size. 
Critics of NHST assert that alternative approaches based on Bayes’ theorem are more appropriate 
for hypothesis testing. This paper provides a non-technical introduction to essential concepts 
underlying Bayesian statistical inference, including prior probabilities and Bayes factors. 
Common criticisms of NHST are outlined and possible benefits of Bayesian approaches over 
NHST are discussed.  

Introduction 
In this article, I provide an overview of Bayesian statistics and contrast it with null hypothesis 
significance testing (NHST). I also describe criticisms often expressed about NHST (e.g. in 
Cohen, 1994) and reasons that Bayesian statistics might be a suitable alternative for analyses in 
second language (L2) learning research. I will also outline concepts important to Bayesian 
approaches, such as prior probability distributions and Bayes factors.   

Perhaps the best way to introduce Bayesian statistics is by way of an example. Research has 
demonstrated that the motivational variable interest has a powerful effect on processes important 
to reading comprehension (see Hidi & Renninger, 2006, for a review). A researcher wants to learn 
whether interest influences comprehension in L2 reading in a comparable way as occurs in first 
language (L1) contexts, so she has a group of 25 students read an interesting and a boring story 
and take comprehension tests. She checks for differences between the test scores by using a t test. 

Researchers use t tests to compare two groups of data produced under different conditions to 
determine the probability that no difference exists between them beyond random variation. The 
hypothesis that no difference exists is called the null hypothesis (H0). Data from a t test consists 
of an independent variable (IV) that is manipulated and a dependent variable (DV) that might be 
affected by the IV.  

The probability (the p value) that a t statistic of the size produced by the test would occur given 
that H0 is correct is calculated. A p value of less than .05 would mean that if we were to repeat 
this test 100 times, a statistic of this size or higher would result by random chance fewer than five 
times (see Figure 1). In this case the results are considered “significant” and the researcher rejects 
the null hypothesis.  
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Figure 1. Idealized distribution of scores with threshold p=.05 marked. If the t statistic falls 
to the right of this line, the mean difference between H0 and H1 is considered statistically 
significant. 

Note that space constraints do not permit detailed discussion in this article of one- and two-tailed 
tests, t distributions, degrees of freedom, confidence intervals, effect sizes, or statistical power, 
but these are also important aspects of NHST. Readers unfamiliar with these concepts are 
encouraged to read explanations that can be found in many introductory statistics textbooks (e.g. 
Field, 2009). 

Our researcher performs a t test on the data (in reality, the data was produced using a random 
number generator for normal distributions at Wessa, 2008). Table 1 shows the descriptive 
statistics and the results are provided in Table 2.  

Table 1. Descriptive Statistics for Boring and Interesting Text Conditions (n = 25) 

Text Group N M SD SE 
Boring 25 10.24 2.13 .43 
Interesting 25 10.92 3.76 .75 

Table 2. T Test Results for Boring and Interesting Text Conditions 

Df SED MD T p (one-tailed) 
24 .489 .68 1.69 .098 

Note: p<.05.  

As can be seen, the results are insignificant at p<.05, because .098 is larger than .05. The 
researcher therefore is inclined not to reject the null hypothesis. A colleague of our researcher, on 
a lark, does the same experiment with a very similar group of students and adds the scores to the 
original data. The t test is performed again, now with an n size of 50. The new descriptive 
statistics and t test results are provided in Tables 3 and 4.  
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Table 3. Descriptive Statistics for Boring and Interesting Text Conditions (n = 50) 

Text Group N M SD SE 
Boring 50 10.24 2.10 .30 
Interesting 50 10.92 3.72 .53 

Table 4. T Test Results for Boring and Interesting Text Conditions (n = 50) 

Df SED MD T p (one-tailed) 
49 .342 .68 1.99 .026* 

Note. *p<.05. 

As we can see, the descriptives have changed little, but the results of the t test are now significant. 
By convention, these results are now considered publishable, despite the fact that for all practical 
purposes they are identical to those of the previous experiment. This poses a serious dilemma for 
our researchers. Should they reject or not reject the null hypothesis? In order to get published, 
should they favor the second results and pretend those of the original study did not occur? The 
source of the dilemma lies in the fact that finding significance is reliant on statistical power, 
which is related to sample size. Such is the relationship between N size and significance that in 
the case of a large enough number of cases, finding significance is all but certain, irrespective of 
an actual experimental effect. This is one of several problems described by critics of NHST.  

Criticism of null hypothesis significance testing 
Criticism of NHST can be divided into two categories: 1) weaknesses of NHST as an evaluative 
tool, and 2) misinterpretations of what NHST results mean.   

Weaknesses 

Problematic qualities of NHST cited by critics include: 

• The primacy of significance. Editors of L2 learning academic journals tend to view 
significance as the mark of success, but using the p value as a Litmus test for “success” is 
problematic. As noted, variations of sample size can change the likelihood of finding 
significance, a characteristic that leads some statisticians to argue that NHST p values do 
not qualify as measures of statistical evidence, much less success, because identical p 
values do not convey identical levels of evidence when sample sizes differ (Wagenmakers, 
2007).  

• The primacy of significance thresholds. R.A. Fisher, whose work underpinned the 
development of the p value, did not himself regard p values as rigid cut-off points (Salsburg, 
2001). In fact, Fisher’s selection of these benchmarks was at least somewhat arbitrary; he 
identified p value thresholds in his book Statistical Methods for Research Workers (1925) 
by providing critical values tables, which were limited to .05, .02, and .01, to “save space” 
(Field, 2009, p. 51). As Abelson (1997) commented, “Literal insistence on the .05 level is 
as silly as would be other arbitrarily rigid quality standards for research results, like 30% 
generality, or more interestingness than three quarters of the existing literature” (p. 14). 

• Power issues. Statistical power refers to the probability that a test can detect an effect. 
Adjustments made in analyses to reduce the chances of incorrectly rejecting H0 (Type I 
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errors) or incorrectly failing to reject H0 (Type II errors), inevitable in a range of 
NHST-based tests, involve a loss of statistical power.  

Misconceptions 

Misconceptions persist regarding what NHST in fact measures and what its results mean. Some 
are outlined below.  

• The meaning of significance. It is tempting to conclude that statistical significance 
indicates that the null hypothesis is false and the alternate hypothesis is true, but this is not 
correct. The finding of significance really means nothing more than the researcher is 
inclined to reject the null hypothesis based on a low probability (defined by a somewhat 
arbitrarily chosen threshold) that the data at hand would occur randomly in many 
recursions of it. Significance does not mean the null hypothesis is formally invalid. 
Rejecting H0 does not prove H1, but instead merely offers an indirect and rather flimsy 
indicator of support for it.  

• The meaning of lack of significance. Because NHST purports to test the hypothesis that the 
null hypothesis is true, one might well be inclined to infer that an “insignificant” finding 
means just that: the null hypothesis is true. In fact, situations where mean differences are 
literally zero virtually never occur in the real world.  

• Substitution of a conditional probability for its inverse. The notion that the probability of 
certain data given that H0 is true, that is, P(D|H0), is equivalent to the probability that H0 is 
true given certain data, or P(H0|D), is intuitively appealing, but the difference between 
these two becomes clear when contemplating the probability of having a runny nose given 
the condition of having the flu versus having the flu given the condition of having a runny 
nose; one can have a runny nose for many reasons besides the flu.  

• The idea that “significance” means “importance”. Significance does not refer to the 
magnitude of an experimental effect. Reporting effect sizes in published studies would help 
clarify this misunderstanding, but few L2 researchers do so.  

While the issues outlined above might create obstacles to rigorous hypothesis construction and 
testing, critics of NHST assert that a solution to many of these problems lies in Bayesian 
statistics.  

Bayesian statistics 
Bayesian statistical approaches are drawn from the work of 18th century mathematician Thomas 
Bayes. Bayesian and classical statistical approaches differ crucially in two areas. The first relates 
to how analyses are interpreted. Frequentist approaches like NHST produce p values that estimate 
the likelihood that the data would occur given that the null hypothesis is true. Rather than stating 
a “cut point” after which one hypothesis is chosen over another, Bayesian analyses result in 
probability values that are used to compare the relative support for one hypothesis over another. 
In short, frequentists seek significance and Bayesians seek probability support for a hypothesis. 
The second area where the two kinds of approaches differ is the formal use of prior information. 
Frequentists ignore what was previously known about the experimental condition when 
conducting a new experiment, but incorporating this prior information into future analyses is an 
essential part of Bayesian approaches. Prior information is incorporated by using the feature 
which most distinguishes Bayesian statistics, the prior probability.  
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Thomas Bayes’s solution to a problem of “inverse probability” (e.g., estimating the unknown 
likelihood of an event happening given the known likelihood of a certain condition) contained a 
description of the formula which has come to be known as Bayes’ theorem. As noted, a 
distinctive feature of the formula is the prior probability (the prior). In a basic application of 
Bayes’ formula, the multiplied product of the prior and the probability of data given a certain 
parameter is divided by the probability of the parameter defining the sample space to produce a 
posterior probability (the posterior): 

! ! !  = ! ! ! !(!)
!(!)  

where A is the parameter under investigation and B is the data. 

Let us make our introduction to Bayes less abstract with a simple example (adapted from Bonilla, 
2011; for another non-technical example of Bayes’ formula, see Yudkowsky, 2003). The data 
used in the first t test could be categorized as individuals who passed and failed the 
comprehension test. If we consider test scores of 12 (60%) or higher as “pass” and those below as 
“fail,” then 6 of 25 students (24%) passed the test in the boring text condition, and 15 of 25 
students (60%) passed in the interesting text condition. To understand how Bayes’ formula works, 
it is useful to concentrate on how the Interest condition relates to the Pass scores (see Figure 2).  

 

Figure 2. Interesting and boring text conditions divided into passed (shaded areas) and 
failed (unshaded areas) results on comprehension tests.  

The rectangle on the left indicates the Interesting condition, the rectangle on the right the boring 
condition, The shaded areas indicate the proportions of students in each condition that passed the 
test. The shaded rectangle to the left of the center dividing line represents the intersect of students 
who found the text interesting and passed the test; it is denoted as Int � Pass, which can be read 
as “Int and Pass happen together”. Likewise, the shaded portion of the “Boring” condition 
indicates the intersect of students who found the text boring with those who passed the test (Bor 
� Pass).  

What is the probability that a student passed the test if he read the interesting text? In conditional 
probability notation, this is signified by P(Pass | Int), which is read, “the probability of the event 
of a student’s passing given the event that the student read the interesting text”. We can think of 
this as the answer to the question, “how much of the Interesting rectangle is accounted for by the 
shaded Passed area?” The answer is already given as 60%. 

This is not what the researcher really wants to know, however. The researcher is interested not in 
the probability of passing given that the text is interesting, but in the probability of the text being 
interesting given that the student passed. This is represented by P(Int | Pass), which means, “the 
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probability the text was interesting given that the test was passed”. We can easily calculate this 
information from Bayes’ formula as follows: 

! !"# !"##  = ! !"## !"# !(!"#)
!(!"##)  

The values in the numerator are already known—the probability a student passed given that he 
thought the text was interesting is 0.60: 

! !"## !"#  = .60 

and the probability that the student found the text interesting is 0.50, as half the scores came from 
the interesting condition: 

!(!"#) = .50  

The shaded Pass area has two parts: (A) the section contributed by the Int condition, and (B) the 
section contributed by the non-Int (boring) condition. To calculate !(!"##), these two parts are 
added.  

In calculating (A), we are asking,�how much of the Pass area is made up of passing scores in the 
context of the Interest rectangle? The probability of a passing score within the Interest rectangle, 
P(Pass | Int), is .60. To find out how much of this probability contributes to the Pass area, we 
simply multiply it by P(Int), which is the probability of the student finding the text interesting, or 
50%: 

.60 × .50 = .30.  

Likewise, in calculating (B), we are asking “how much of the Pass area is comprised of passing 
scores in the context of the Boring condition?” Mathematically, this is P(Pass | B) × P(B). We 
know that 24% of the students who read the boring text passed the test and that 50% of the scores 
came from this condition. Therefore, (B) is calculated: 

.24 × .50 = .12.  

The denominator in Bayes formula, !(!"##), then, is: 

.30 + .12 = .42.  

Plugging our values into Bayes’ formula, we obtain:  

! !"# !"##  = 
.!"
.!" = .71 

Therefore, if we randomly draw a student with a passing test score from this group, there is a 71% 
chance that he read the interesting text. If we were to calculate P(B | Pass) using Bayes formula, 
we would obtain the remaining percentage of this region, that is, 29%. Of course, since 
probability of a given space must add up to 1, we could also simply subtract .71 from 1 to 
derive .29. We can now add these probabilities to the previous diagram: 
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Figure 3. Bayes formula provides probabilities of passing conditions. 

Although in this simple example the difference between pass and fail percentages is stark; 
however, it should be noted that the results are not always so obvious. If far more students found 
the texts boring than interesting, it is possible that a student that passed will still have a higher 
likelihood of having thought his book was boring, even if a much higher proportion of students 
who thought the texts were interesting passed. Bayes’ rule adjusts for differences in sample sizes 
between conditions when calculating these probabilities. 

Prior probabilities 

The simple example above might be useful for illustrating the basic dimensions of Bayes theorem, 
but it elides over some important points, chiefly to do with the assignment of the prior probability. 
Unlike classical statistics, Bayesian approaches enable researchers to include relevant prior 
information in formal experimentation. If previous research indicates one outcome is more likely 
than another, a Bayesian can integrate this information into his hypothesis formation and testing 
(Figure 3). The revised probability resulting from the new experiment can then influence the 
selection of priors used in subsequent investigations to further refine probability estimations in 
support of one hypothesis or other. The prior probability is a summary of a researcher’s belief 
about the outcome of a given experiment.  

In the example above, for simplicity, the prior,!!(!), was given as a known value and as a simple 
mean, but in a normal Bayesian analysis, the prior would be designated based on personal belief 
of the researcher. This personal belief could be drawn from previous research, or even just the 
researcher’s conjecture. Since Bayesians, unlike frequentists, regard unknown values under 
investigation as random variables (that is, variables that manifest as values with certain 
probabilities), the conjectured outcomes for these values, expressed by the prior, take the form of 
probability distributions, indicated concretely by parameters like mean, standard deviation, and 
range. If prior information is lacking, the researcher can use a prior that expresses a high degree 
of uncertainty. High uncertainty can be related by designating a prior with a large standard 
deviation and by maximizing the range (Klugkist & Mulder, 2008). When probability 
distributions are used in Bayesian procedures, the calculations become much more complicated 
than those of our example. They are accomplished using calculus and sophisticated algorithms 
(such as Markov Chain Monte Carlo) that require a computer to generate. The good news is that 
software for using these procedures is available. 

10 15 6 19

Interesting 
(n = 25)

Boring 
(n = 25)

Passed 
(n = 21)

P(Pass | Interesting) = 71% P(Pass | Boring) = 29%
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Figure 4. Bayesian approaches combine prior information, in the form of a prior probability, 
to produce an updated view of phenomena, in the form of a posterior probability (adapted 
from Stevens, 2009). 

Why use a prior?  

To understand why Bayesians incorporate prior information into statistical inference, it is helpful 
to understand the quite different perceptions frequentists and Bayesians have of probability and 
the different goals the two kinds of researchers have in hypothesis testing. For frequentists, 
probability is the likelihood that a certain unknown (and ultimately unknowable) value lies within 
a distribution of values drawn from many samplings of a population, with the goal of analyses 
being to estimate whether sampled data would occur less than five percent of the time (p < 0.05) 
given the null hypothesis is true. For Bayesians, probability is conceived as a degree of personal 
belief which can be refined by confrontation with real-world evidence. In Bayesian statistics, the 
goal is to modify a given state of knowledge about a phenomenon by connecting it to data; to do 
so without concretely representing the state of knowledge would be impossible. This existing 
state of knowledge is represented using the prior. Moreover, because the prior summarizes 
researcher belief about experimental outcomes, it can also be considered an expression of a 
hypothesis, a prediction subject to modification given new information collected during the new 
experiment. 

To make this clearer, let’s look at another example. Our first researcher, devastated by her t test 
debacle, throws away her data. A second researcher, a Bayesian, discovers her data while rooting 
through the trash bin. He decides to analyze it using a Bayesian approach. 

Our Bayesian researcher considers some choices for a prior. In the absence of much prior 
information or a defined hypothesis, he might choose a prior that indicates only that a range exists 
in scores, from 0 to 20, with each score having equal probability of occurring. The X-axis of the 
uniform prior (Figure 4) shows the range of comprehension test scores from zero to 20, and the 
Y-axis shows the probability of those scores according to the prior. This kind of uniform, 
approximately objective, prior conveys much uncertainty and provides little information, so the 
data will dominate the calculation of the posterior probability.  
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Figure 4. Uniform prior where each score on the comprehension test has an equal 
probability of occurring. While this prior would be approximately objective, it would also 
likely be an unrealistic representation of the data.  

Our researcher might view a uniform prior as unrealistic, since data are unlikely to be flatly 
distributed. Also, while the results of the scavenged t tests were contradictory in terms of 
significance, they do suggest a modest degree of variance attributable to the interesting text 
condition. Our researcher gleans further in a literature review that related (fictional) studies 
indicate that interest contributes about 5% to increases in text comprehension. He could assign a 
prior with a mean score 5% higher than would occur by chance (i.e. one point higher than a mean 
of 10) with a standard deviation of 5. The standard deviation for a normal distribution can be 
estimated by dividing the highest extreme of the range of scores, in this case 20, by four. Figure 5 
shows the distribution of this subjective prior.  

The X-axis shows the range of comprehension scores, and the Y-axis shows the probability of the 
scores occurring. For example, a score of 11 (the mean) would have a probability of 
approximately .16 or 16% of occurring whereas a score of 5 would have about .01 or 1% chance 
of occurring. Using this subjective prior would involve the meeting of the hypothesized outcome 
represented by the prior (interest influences comprehension positively by a predicted amount, 
with a predicted degree of dispersion) with the data.  The probabilities predicted by this prior 
would be somewhat higher than those predicted to occur by chance, so while this prior is 
subjective, it is also quite conservative. 

Our Bayesian decides to use the more informative prior to test his hypothesis. To aid in the 
calculations, and to compare the relative support of his hypothesis with that of the null, he uses a 
Bayes factor.  
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Figure 5. Prior with a normal distribution and a mean of 11. This somewhat subjective prior 
would reflect a hypothesized distribution based on previous research.  

Bayes factors 

In a Bayesian version of a t test, the probability of H0 and its alternative are compared to produce 
a statistic called a Bayes factor (BF). Put simply, the BF is a ratio that compares the likelihood of 
one model over another, thereby showing the relative support for the researcher’s hypothesis 
versus another hypothesis (which may or may not be the null).  

Interpretation of the BF is straightforward. For example, a BF of 4 for H1 versus H0 indicates 
support for H1 is 4 times that of H0. A BF of .5 provides two times the support for H0 than for H1 
(Klugkist, 2008). Bayes factors between .3 and 3 do not provide much evidence to differentiate 
the two hypotheses (Jeffreys, 1939, 1998). 

In order to run the necessary calculations, the researcher uses an online Bayes factor calculator, 
provided at the following link (Dienes, 2008): 

http://www.lifesci.sussex.ac.uk/home/Zoltan_Dienes/inference/bayes_factor.swf 

The calculator provides a limited range of priors templates for calculating a simple BF for a 
Bayesian “t test” that shows the relative support for the null hypothesis, as manifested by a 
population value with a mean of 0, and a hypothesis, as expressed by the mean differences and 
distributions assigned by the researcher (For supporting explanation, see Dienes, 2011).   

Some simple modifications to our researcher’s data are required to use the calculator. Our 
researcher chooses a normal distribution option and enters a mean difference of 5% with a range 
of 1% to 10% and a standard deviation of 2.5. With the t test data (n = 50), the BF produced is .45. 
This indicates slightly more support for the null versus the interest hypothesis. This contrasts with 
the finding of statistical significance in the second t test, and that our researcher’s interpretation of 
the BF involves neither rejecting nor failing to reject the null, but instead making inferences based 
on the comparative likelihoods of H0 and H1.  
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Given this result, the researcher would be inclined to align his confidence somewhat away from 
the findings of other research in L1-based contexts. He might give careful consideration to the 
special characteristics of L2 readers and design future studies to explore in a more nuanced way 
potential effects of interest on reading comprehension. In the service of using accumulated 
experiences to update and refine knowledge, the results of a Bayesian analysis are used to 
contribute to new hypotheses and to shape the priors assigned in future studies. Note that this kind 
of statistical reasoning is essentially different from that of many researchers interpreting the 
results of a NHST. In the case of the example t tests, our first researcher either rejects the null 
hypothesis (with the higher n size) or does not reject the null hypothesis (with the lower n size), 
and then draws only peripherally related conclusions.  

Bayesian benefits 
Several qualities of Bayesian statistics might render them useful in L2 learning research, 
including: 

• Flexibility. Bayesian approaches permit direct comparisons between multiple hypotheses 
by incorporating inequality constraints; null hypothesis-based comparisons of multiple 
hypotheses require secondary procedures, such as post hoc tests, which can result in 
reduced statistical power and can yield mutually inconsistent results.  

• Protection against fallacious “significance”. Power and N sizes are not irrelevant to 
Bayesian approaches, but, unlike NHST, high numbers of cases do not inevitably result in 
something akin to “significance.” Instead, in a Bayesian t test where the null is 
approximately correct, higher N sizes drive the BF toward zero (Dienes, 2011). 

• Validity: Bayesian methods directly address questions researchers are trying to answer. 
Unlike frequentists, who test “’nothing is going on’ versus ‘something is going on but I 
don’t know what’” (Boelen & Hoijtink, 2008, p. 10), Bayesians ask, “what is the chance 
my hypothesis is true given the evidence?”  

• Possible: A variety of Bayesian software packages are available, some reasonably 
user-friendly. For example, the Bayesian Inequality and Equality Model Selection (BIEMS) 
program (Mulder, Hoijtink, & de Leeuw, 2012; Mulder, Hoijtink, & Klugkist, 2010; 
Mulder, Klugkist, van de Schoot, Meeus, Selfhout, & Hoijtink, 2009) is available for free 
and has a Windows user interface. For a thoroughgoing description of available software 
packages for Bayesian approaches, see Hoijtink, (2012). 

• Objective: Perhaps the most pervasive criticism of Bayesian approaches relates to the prior, 
which entails, it is believed, a subjective and therefore biased decision by the researcher. 
However, vague or uninformative priors can be assigned which are approximately 
objective.  

Conclusion 
Researchers in L2 learning use NHST almost exclusively. However, many researchers are 
unfamiliar with the limitations of NHST and unaware that alternative procedures, such as those 
related to Bayes’ theorem, exist. Despite the growing wealth of explanatory materials and 
availability of software by which even non-statisticians can avail themselves to Bayesian 
statistical methods, to date, no researcher to my knowledge has attempted to use these potentially 
advantageous procedures in research focused on L2 learning.  
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