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Rasch measurement in language education Part 5: 
Assumptions and Assumptions and rrequirements of Rasch equirements of Rasch mm easurementeasurement   

James Sick  (International Christian University, Tokyo) 
 

Previous installments of this series provided an overview of Rasch measurement theory, discussed the 
differences among the various Rasch models, and compared Rasch theory with classical true score theory 
and item response theory (IRT). In this installment, I will discuss some assumptions and requirements that 
underlie Rasch measurement theory, leading to a more detailed examination of the differences in approach 
between Rasch and 2- and 3- parameter IRT. 
 

Question: I recently came across a posting on a statistics forum stating that “Rasch modeling makes very strong 
assumptions about the behavior of your items. It is a strong measurement model for use when you really need interval 
level measurement and are willing to sacrifice items and even eliminate persons from your data” (Gambrell, 2010, June 
14). My statistics advisor has also warned me that the assumptions of Rasch modeling—unidimensionality, equal item 
discrimination, and low susceptibility to guessing—are often impossible to meet with real-world data. Can you 
elaborate on how we should test these assumptions in order to determine whether it is appropriate to apply the Rasch 
model to a dataset? 
 

Answer. Although unidimensionality, equal item 
discrimination, and no error due to guessing are 
sometimes stated as “assumptions” of the Rasch model, 
Rasch measurement theorists view these properties not as 
assumptions of the model, but as requirements of rigorous, 
fundamental measurement. The Rasch model merely 
provides a mathematical formulation of these fundamental properties that can be used to evaluate a dataset. Put another 
way, from the perspective of Rasch measurement theory these are not characteristics of a dataset that are assumed to be 
true, or that must be verified prior to conducting a Rasch analysis. They are ideals that must be reasonably 
approximated if the data are to be employed to construct high quality measures of a latent variable. This subtle 
difference in viewpoint is sometimes not understood, or is understood but not accepted, by statisticians from outside the 
Rasch tradition. 

       To elaborate, statistical tests are based on a priori assumptions about the data. Analysis of variance (ANOVA), for 
example, assumes a normal distribution, independence of cases, and equal variances of scores across groups. When 
these assumptions are violated, decisions about whether to accept or reject a null hypothesis may not be trustworthy. 
Moreover, the output from a statistical test such as ANOVA does not indicate whether its assumptions have been met. It 
is up to the analyst to carefully examine the data beforehand in order to determine whether they are appropriate for 
ANOVA. If they are not, a competent analyst will usually seek a more appropriate statistical model, rather than discard 
data. 

       Rasch theorists, on the other hand, consider a Rasch analysis to be a distinctly different process from employing a 
statistical model to test a hypothesis. A Rasch analysis is a procedure for assessing the quality of raw score data and if 
the data meet certain criteria, for constructing interval-level measures from them. A thorough Rasch analysis involves 
checking the degree to which the data match a unidimensional measurement model, identifying and diagnosing sources 
of discrepancy, removing items or persons if they are degrading the overall quality of measurement, and finally, 
constructing measures which, to the degree that the data approximate the Rasch model, are both interval-level and 
sample independent. In other words, the “assumptions” of the Rasch model are not evaluated prior to conducting the 
analysis, but as an integral part of it. Having made that point, it is worth discussing why Rasch theorists regard these 
properties as requirements of fundamental measurement, and how the requirements are evaluated in a Rasch analysis.  
 

Unidimensionality 
 

       The requirement of unidimensionality embodies the common sense notion that it is best to measure one attribute at 
a time. We would not consider trying to represent the size and the temperature of a room as a single variable, because it 
is nonsensical. Similarly, while measures of heat, humidity, and wind speed can be combined to form a useful “comfort 
index,” common sense tells us that first constructing separate measures of these components would be less confounding 
and ultimately more useful. Clear unidimensional variables help us to form conclusions and make decisions free of 
confounding interpretations. 

"[Unidimensionality, equal item discrimination, and 
low susceptibility to guessing] are not characteristics 
of a dataset that are assumed to be true . . . [they] are 
ideals that must be reasonably approximated . . . Real 

world data are not expected to match the [Rasch] 
model perfectly." 
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       Some SLA researchers have questioned the application of Rasch measurement to language testing on the grounds 
that the knowledge and skills underlying foreign language competence are too complex to be conceptualized as a 
unidimensional construct (e.g. Buck, 1994; Hamp-Lyons, 1989; Nunan, 1989). This objection is unnecessarily 
restrictive, however, as psychological and psychometric unidimensionality are essentially two different things. 
Unidimensional measurement does not require that performance on a set of items be due to a single psychological 
process. In fact, test performance usually incorporates a variety of skills, knowledge, processes, and strategies (Bejar, 
1983 p. 31), and individual test takers approach problem solving in unique ways. Unidimensional measurement requires 
only that the items function in unison to form a single underlying pattern in a data matrix (McNamara, 1996 p. 270-271).  

       In Rasch terms, unidimensional measurement means simply that all of the non-random variance found in the data 
can be accounted for by a single dimension of difficulty and ability. Recall that the Rasch model predicts the likelihood 
of success at a task based on the gap between a person’s ability and the task’s difficulty. Improbable responses are 
predicted to occur, but infrequently and randomly. That is, we should not be able to predict unexpected responses from 
the responses to other items or by membership in a demographic group. If we can, we infer that there is another 
psychometric dimension that is influencing responses.  

       The above definition of unidimensionality is not meant to diminish the importance of having a coherent theory to 
explain the pattern of responses and communicate their meaning. It is only to clarify that uniformity of psychological 
processes and strategies is not an a priori requirement for employing Rasch measurement. Critics claiming that 
language performance is too multifaceted to be suitable for Rasch measurement are imposing an unnecessary restriction 
based on a different understanding of dimensionality. 

       Several tools are available for assessing psychometric unidimensionality in Rasch software packages1. Infit and 
outfit mean square fit statistics provide summaries of the Rasch residuals, responses that differ from what is predicted 
by the Rasch model, for each item and person. High mean square fit statistics indicate a large number of unexpected 
responses. This might be due to poor item design, such as ambiguous wording, double keys, etc., or it may be an 
indication that the item is measuring a different construct. High person mean square values indicate test takers who 
filled in responses randomly, have unusual gaps in their knowledge, or belong to a demographic group that 
systematically responds to some items differently.2 Generally, item infit mean square values between 1.5 and 2.0 are 
considered to be unproductive for measurement, and values higher than 2.0 actually degrading (Wright, Linacre, 
Gustafson, & Martin-Löf, 1994). The overall quality of a test or questionnaire can often be improved by deleting such 
items from the analysis. Highly misfitting persons can be permanently deleted from the analysis, measured separately 
using a subset of items, or temporarily removed while the item difficulties are calibrated and anchored, and then 
reinstated. If there are a large number of misfitting items or persons, that is an indication that the construct has not been 
carefully thought out, and it may be necessary to reconsider the rationale that instigated the decision to group the items 
as a single test. 

       Another tool for assessing measurement dimensionality is a principal components analysis (PCA) of the Rasch 
residuals. In this analysis, which can be run directly from Winsteps or RUMM, the primary measurement dimension, 
difficulty, is first extracted, and the residuals then analyzed for meaningful structure. If the data closely approximate the 
Rasch model, residual factor loadings will be small, random, and not suggestive of meaningful constructs. In other 
words, we can confirm psychometric unidimensionality by a failure to find any meaningful components beyond the 
primary dimension of measurement (Linacre, 2010). 

       An advantage of residual PCA is that the relative size of secondary dimensions can be assessed. We may, for 
example, identify extraneous dimensions related to sub-skills or item formats that are large enough to be detected, but 
not large enough to impact decisions or significantly distort the primary measures. If secondary dimensions are 
significant enough to impact the empirical meaning or use of the measures, we may consider diagnostic actions such as 
grouping the items into subtests and constructing additional latent variables (Linacre, 1998).  

       Yet another technique provided by most Rasch software packages employs graphical charts to indicate person-item 
interactions, usually referred to as differential item functioning (DIF). DIF can direct attention to items or sets of items 
that work differently for a demographic group, such as students with a different major or different L1. An illustrative 
example would be a reading passage related to a popular computer game that is more familiar to boys than girls. The 
boys can thus utilize their background knowledge to better comprehend the passage and the questions, succeeding more 
often than their performance on other sections predicts. DIF can also be thought of as a violation of the 
unidimensionality requirement in that some attitude or realm of knowledge outside of the target domain is impacting 
performance on an item or subsection for a subset of persons. 
 

Equal item discrimination and error due to guessing 
 

       The mathematical expression of the Rasch model implies that all items discriminate equally between high and low 
ability examinees, and that there is no error due to guessing successfully. These properties draw attention from critics 
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for two reasons. The first reason is that real world test data often do not meet these conditions precisely. If equal 
discrimination and no guessing are viewed as conventional statistical assumptions that must be verified prior to analysis, 
they are indeed rather difficult to meet. The second reason is that a similar analytical tool, 2- and 3-parameter item 
response theory (IRT), eliminates these restrictions by allowing individual discrimination and guessing parameters for 
each item. Proponents of the IRT approach argue that the relaxed restrictions of the 2- and 3-parameter models make 
them more appropriate for real world test data. 

       To address the former point first, the Rasch model is an ideal. It is a standard intended to describe the response 
pattern that would be observed if all items were measuring the same construct, were independent of each other, and had 
no non-random measurement error. Real world data are not expected to match the model perfectly. A Rasch analysis 
seeks to determine whether the data approximate the model closely enough to be useful. The analysis produces various 
graphs and indices that allow us to quantify the degree of deviance from the model, identify sources of measurement 
disturbance and correct them, and then make informed decisions about whether the data are “good enough” to meet our 
purposes. The primary motivations of a Rasch analysis are evaluation, diagnosis, and fine-tuning. Generally, research 
and experience have shown that measures constructed from Rasch models are robust to minor deviations from the 
model’s requirements (Henning, Hudson, & Turner, 1985; Smith, 1990). 

       Regarding the latter point, if differences in item discrimination and susceptibility to guessing are systematic 
properties of test items, it would seem quite sensible to utilize those properties to produce better estimates of person 
ability, the approach taken in 2- and 3-parameter IRT. To understand why Rasch theorists reject individualized 
discrimination and guessing parameters, first note that a Rasch analysis estimates a single, averaged discrimination 
parameter that is applied to all items in the instrument. Items with observed discrimination values significantly higher 
or lower than this uniform value are then scrutinized, on the assumption that below average values indicate a weak 
relationship to the primary construct, and above average values imply a lack of item independence. The degree of 
deviation is summarized in the Rasch mean-square fit statistics. In fact, Rasch mean square fit statistics, the point-
biserial correlations used for item discrimination in classical test theory, and the discrimination slope values used in 
IRT are highly correlated and provide essentially the same information (see Hudson, 1991; Reynolds, Perkins, & 
Brutten, 1994). 

       Item characteristic curves (ICC), shown below in Figures 1 and 2, are useful in illustrating the logic underlying the 
Rasch point of view. In Figure 1, three ICCs indicate the probability that a person of ability B, delineated along the x-
axis, will answer an item successfully. An item’s difficulty, D, is the point midway along the curve where the 
probability of success is 0.5. The difficulty calibrations of Items 1, 2, and 3 are thus minus one, zero, and one logit, 
respectively. The slope of the curves, usually labeled a, corresponds to the discriminability of the item. It indicates how 
well an item differentiates between examinees having abilities above the item’s difficulty location from those having an 
ability below, a steeper slope indicating high discriminability.3  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Hypothetical Rasch item characteristic curves. 

 

       Figure 1 illustrates how three hypothetical ICCs might be rendered by a Rasch software package. We can estimate 
the probability of success of an examinee of any ability on each item by drawing a perpendicular through a point on the 
x-axis and noting where the line intersects the ICC. For example, a person with zero logits of ability would have about a 
98 percent probability of answering Item 1 correctly, a 50 percent probability of answering Item 2 correctly, and a 2 
percent probability of answering Item 3 correctly.  Most importantly, all three items have equal slopes (discrimination), 
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and at no point do the ICCs cross each other. The relative difficulty of each item is unambiguous for any point along the 
ability continuum.  

       In Figure 2, however, each item has been rendered with an individualized slope, the procedure followed when using 
a 2-parameter IRT model. This allows the ICCs to cross each other at various points along the ability continuum. Now, 
the rather straightforward question of “which item is easiest” becomes ambiguous. For persons with abilities in the 
region of minus one logit, Item 1 is the easiest, with a probability of success of about .30, followed by Item 2 and then 
Item 3. At zero logits of ability, however, Item 3 is the easiest, followed by Item 1 and then Item 2. Finally, for a person 
with an ability of one logit, the order of difficulty is reversed: Item 3 is easiest, followed by Item 2, followed by Item 1. 
This ambiguous ordering of item difficulty destroys the Rasch concept of construct validity, which relies on the 
implicative hierarchy of task difficulty to define the latent variable. For a detailed discussion of the implications of 
allowing crossed ICCs on construct validity, including an intriguing example, see Wright (1992, 1999). 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Crossed item characteristic curves characteristic of a 2-parameter IRT model 

 

Discrimination, unidimensionality, and item independence 
 

       The implications for construct validity of crossed ICCs is not the only objection to allowing individual 
discrimination calibrations for each item. As mentioned previously, item discrimination is related to the fundamental 
measurement requirements of unidimensionality and item independence. An item with no correlation whatsoever with 
the other items in the test would have a flat ICC. Gentle ICC slopes, like low point biserial correlations, imply a weak 
relationship to the other items: overall ability on the latent variable has little effect on the likelihood of answering the 
item correctly. Such items are either adding random noise due to design flaws, or they are measuring a different 

construct. IRT approaches deal with such items by according them 
less weight in the estimation of ability. Rasch methodology, with its 
stronger emphasis on diagnosis, prefers to identify weak items 
through fit statistics and if their contribution to the construction of 
the measure is insubstantial, delete them. 

       But what is the problem with highly discriminating items? High discrimination is considered an asset in classical 
norm-referenced testing and 2-parameter IRT, an indication that an item is a superior indicator of the latent variable. In 
Rasch theory, it is not that highly discriminating items are undesirable per se. Rather, the question is why would an item 
have a significantly higher than average correlation to the total score? Items that predict the total score more than other 
items are likely to be redundant, or in some way dependent on other items. There are many sources of item dependency, 
but an illustrative example is to imagine that in a long test, an item is inadvertently used twice (I’ve known this to 
actually happen). Assuming that test takers answer the item consistently, able examinees get two points for answering 
correctly while weaker ones lose two points. This will boost both items’ correlation with the total score while providing 
no unique information about examinee ability. There would be, literally in this case, a “two for one” effect. Besides this 
unlikely but illustrative example, there are other, more subtle sources of item dependence or redundancy: 

1. Stems or distractors that provide clues to other items. However the clues require a certain level of ability 
before they are noticed and utilized, so only able examinees benefit. 

"Items that predict the total score more than 
other items are likely to be redundant, or in 

some way dependent on other items." 
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2. Success creates additional context. Cloze tests may have this problem. As items are filled in, context increases, 
providing additional clues to the more able test takers. 

3. A matching format with an equal number of stems and choices. Those who know k-1 items are certain to know 
k items. They get the last item, presumably the hardest, for free. 

4. Easy items that appear near the end of a long test. High ability examinees answer successfully because the 
items are easy. Low ability examinees probably could answer successfully, but do not have time to attempt 
them. 

5. A questionnaire item is merely a negative restatement of another item, reverse scored. For example, “I love to 
study English” and “I hate to study English.” 

6. A questionnaire item is a “summary item.” Summary items summarize a set of other items, or even name the 
construct. For example, “Overall, I am highly motivated to learn English.” Respondents who have responded 
positively to other motivation questions are obliged or compelled to agree.  

       Items such as the above tend to overfit the Rasch model. They produce low mean square fit statistics, and if ICCs 
are drawn, have steeper slopes. They do not add noise or degrade the quality of measurement as poorly discriminating 
items do, and it is not absolutely necessary to delete them from an analysis. The chief harm done by overfitting items is 
that they create artificial variance, by “robbing the poor to feed the rich,” so to speak. This leads to inflated estimates of 
reliability, fooling us into believing that we are measuring more accurately than we actually are. From the perspective 
of Rasch theory, the IRT procedure of according highly discriminating items a greater weight when estimating ability 
exacerbates this problem. 
 

Success Due to Guessing 
 

       In the 3-parameter IRT model, the lower asymptote, the tail of the ICC where the probability of success approaches 
zero, can be set to approach a value other than zero, such as 20 percent. The rationale is that in an item format such as 
five-option multiple choice, an examinee making random choices would have a twenty percent probability of answering 
an item correctly, so the probability of answering correctly is never zero. Moreover, this value can be individually 
estimated for each item, an acknowledgement that difficult items or items with implausible distractors are more 
susceptible to guessing error. As the 2-parameter IRT model does with discrimination, the 3-parameter IRT employs a 
weighting scheme to progressively correct for guessing. Correct responses to items whose difficulty is considerably 
higher than an examinee’s ability are accorded a reduced weight, proportionate to their improbability, when used to 
estimate ability. 

       Like individualized slopes, individualized asymptotes lead 
to crossed ICCs and are objected to in Rasch methodology for 
the same reasons. Rasch methodology does, however, permit 
an analyst to specify a lower asymptote higher than zero, so 
long as it applies to all items, preserving the uniformity of the 
test-wide ICC. Unlike IRT, however, a Rasch guessing threshold does not reduce the scoring weight of improbable 
successes. Rather, when the gap between an item and a person is above a designated threshold, such as 2 logits, the 
response is automatically treated as missing data. Such a strategy might be applied post hoc, for example, if insufficient 
time for a test administration led to a large number of random answers near the end of the test.4 

       Studies of guessing behavior, however, have found that most examinees do not engage in random guessing. 
Guessing behavior appears to be an individual attribute, related to risk-taking, cultural background, and test-wiseness 
(Gershon, 1992; Waller, 1973). This can be a problem when a 3-parameter model is applied, as it penalizes examinees 
who simply leave blanks for items they cannot answer. In principle, a well-designed multiple-choice test should have 
little error due to guessing if items are well-targeted, adequate time is provided, and distractors are effectively designed. 
Rather than treating guessability as an item property, Rasch methodology stresses minimizing guessing error by 
designing distractors to attract different ability levels, setting appropriate time limits, creating linked, alternate test 
forms if there is a wide range of ability, and by applying the Rasch partial credit model to exploit information to be 
found in distractor choice (see part 3 of this series, Sick, 2009a). 

       The evaluative and diagnostic approach taken in Rasch methodology views guessing error as a flaw in item or test 
design. Guessing is not distinguished from any other kind of error. That is, its impact is quantified and evaluated 
through fit statistics, and if severe enough to warrant, remedied. Because this source of error is peculiar to “choice” 
formats, test designers may need to decide whether the convenience of machine scoring justifies the additional error, in 
light of how the measures will be used. A test designer might, for example, decide that the multiple-choice format is too 
error prone for high stakes decisions such as medical licensure, but suitable for less crucial applications such as 
educational placement. Evaluation of fit helps to identify and quantify error, leading to more informed decisions. 
 

". . . most examinees do not engage in random 
guessing. Guessing behavior appears to be an 

individual attribute, related to risk-taking, cultural 
background, and test-wiseness . . ." 
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Deleting data 
 

       The Rasch practice of deleting items or people from 
the analysis when they do not conform to the Rasch model 
strikes some researchers as wasteful, or even manipulative. 
However, individual items are intended to productively 
contribute to a sound inference of an examinee’s ability, 
just as individual examinees are expected to contribute to a 
meaningful ranking of the items. Deleting persons who are 

uncooperative, or items that are error-prone or measuring a different construct, is little different from ignoring the 
advice of fools and liars. When a test or questionnaire has been carefully designed, data deletion amounts to fine tuning: 
a few items or persons that did not function as expected are removed in order to make the constructed measures more 
efficient, reliable, and inferentially valid. When an analysis finds that a large number of persons or items are misfitting, 
it is an indication of greater problems. Perhaps the construct has yet to be conceptually well defined, or there is 
significant failure of instrument design, targeting, or administration. In other words, there has been a failure to achieve 
sound measurement. In such cases, it is dubious practice to employ summed scores in any form to indicate degrees of 
difference on a single variable. 

 

Notes 

1. See (Sick, 2009b) for a review of various Rasch software packages. 

2. A complete discussion of how to diagnosis misfitting items is beyond the scope of this article, but interested readers 
are directed to the section entitled “Misfit diagnosis: infit outfit mean-square standardized” in the latest edition of the 
Winsteps manual, available for free download from www.winsteps.com. 

3. In classical test theory, item discrimination is generally reported as the point biserial correlation of an item with the 
total test score, or as the item facility of the top third scorers minus the item facility of the lower third. If it is not clear 
to you why a steeper ICC slope corresponds to greater item discrimination, think of the probability of success on the y-
axis as the percentage of test takers who would answer correctly, given a large enough sample. Looking at Figure 2, 
compare the difference in expected success rates between two ability points for each ICC. For example, subtract the 
expected success rate of examinees at minus one logits from the expected rate for examinees at zero logits. You will see 
that Item 1, which has the gentlest slope, has a difference of about 20 percent, while Item 3, the item with the steepest 
slope, has a difference of about 60 percent. This is quite similar to the top third/bottom third approach used in classical 
test theory, but can be applied anywhere along the ability continuum.   

4. Not all Rasch software packages offer this feature. In Winsteps, a Rasch equivalent of a lower asymptote can be set 
for all items using the “cutlo” function. The cutlo function automatically treats responses as missing data if the gap 
between person and item is above a designated threshold.  
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