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Abstract 
 
Cognitive diagnostic assessment (CDA) is a development in psycho-educational measurement which helps 
assessment researchers examine test takersʼ mastery of specific sub-skills with greater specificity than other 
models such as Rasch or item response theory models. This paper discusses the principles of CDA in general 
and the fusion model (FM) in particular, underscoring their advantages over other models. It concludes by 
discussing some resources to learn more about CDA.  
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    Cognitive diagnostic assessment (CDA) is a relatively new method in education as well as language 
assessment to help furnish fine-grained diagnostic information about test takers’ degree of mastery of 
various defined sub-skills (Lee & Sawaki, 2009). Although the development of CDA has largely been 
motivated by the need for new formative assessment methods, the technique has been recently 
retrofitted to norm-referenced tests (Jang, 2005, 2008).  
  
     Using CDA methods in assessment confers some 
benefits that other models do not. First and foremost, 
the majority of item response theory (IRT) and Rasch 
models assume or require the statistical 
unidimensionality of data sets as a precondition for 
item calibration and parameter estimation. Although 
multidimensional Rasch models lack this requirement, 
in most other models unidimensionality is considered requisite to locate test takers along a hypothetical 
continuum. A great asset of CDA is that it does not require unidimensionality. The unidimensionality 
precondition seems particularly problematic in the language assessment field because most 
measurement models force the test data to be unidimensionally asymptotic, whereas research shows 
that language and educational assessment tools typically tap into an array of attributes or sub-skills, 
each of which could create a statistically separable dimension (Aryadoust, Akbarzadeh, & Akbarzadeh, 
2011; Buck, 1994).  
     Fitting unidimensional models into the data with complicated constituent structures is likely to 
identify misfitting items or persons, which, irrespective of their content quality, the researcher must 
then delete, also eliminating useful information about test takers or items.  
    One application of CDA modeling is to evaluate test takers’ mastery of measured sub-skills. For 
example, in a test of foreign language reading comprehension, test takers might need to understand 
particular verbs or nouns (sub-skill 1) or make inferences (sub-skill 2). Examinee’s mastery in each of 
these sub-skills is estimable through CDA models. Because they evaluate the influence of multiple test 
takers’ sub-skills on their test performance, CDA models can provide rich feedback on degrees of 
examinee mastery of each sub-skill and allow for focused learning. 
     Psychometricians such as Tatsuoka (1983) and Hartz (2002) have developed a number of CDA 
models, few of which have been applied to language assessment. The objective of this article is to 
examine the potential that CDA modeling has in language assessment. The article describes the 
principles of CDA models in general, and the fusion model (FM) in particular. It finishes off by 
discussing what CDA might imply for foreign language assessment.  
 

“A great asset of CDA is that it does not require 
unidimensionality. The unidimensionality 
precondition seems particularly problematic in the 
language assessment field because most 
measurement models force the test data to be 
unidimensionally asymptotic . . .” 
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An Overview of CDA 

 
     As a multidimensional IRT class of models, CDA is a relatively new development in latent trait 
measurement that uses both mathematical methods of parameter estimation and principles of cognitive 
psychology to distinguish masters from non-masters (DiBello, Roussos, & Stout, 2007; Geirl, Cui, & 
Zhou, 2009). On a language test in which K sub-skills (or attributes) are tested, there are K×αj mastery 
score values (α1,…., αk). For example, for K = 3, a test taker who receives α = (1, 0, 1) has mastered 
two sub-skills. There are 2K possible mastery/non-mastery patterns, called latent classes (Gierl, Cui, & 
Zhou, 2009; Rupp, Templin, & Henson, 2010). Figure 1 displays a few latent classes for a test with 
three sub-skills. 
 

   
 Figure 1. Illustration of some latent classes for a cognitive diagnosis of three identified sub-skills (K = 3). Each 0 indicates 
that the sub-skill is not mastered and therefore not applied to the test item and each 1 indicates that the sub-skill is mastered 
by the test taker.  
 
     Fu and Li (2007) summarized 62 psychometric models used for confirmatory diagnostic purposes. 
They defined these models as “confirmatory” because the researcher specifies the relationships 
between manifest and latent variables in a matrix, called Q-matrix. The Q-matrix is constructed by 
associating test items to hypothesized sub-skills on the basis of an a priori theory (see The Fusion 
Model section below). However, Rupp’s (2007) taxonomy of CDA models defines these models more 
narrowly and includes fewer models. Those include the Deterministic Input, Noisy “And” gate (DINA) 
model (Junker & Sijtsma, 2001) as well as the FM (Hartz, 2002; Hartz, Roussos, & Stout, 2002). 
     Another useful classifying criterion proposed by Hartz et al. (2002) is between two general classes: 
those based on Tatsuoka’s (1983) rule space model (RSM), which is an ability-based model; and those 
centered around Fischer’s (1977) linear logistic trait model (LLTM), which is an item difficulty-based 
model. All subsequent CDA models have been attempts to expand on these two model classes (Lee & 
Sawaki, 2009). An RSM model associates test items to the specified cognitive sub-skills “which 
represent the underlying knowledge and cognitive processing skills that the items assess, and then, 
based on an test taker’s pattern of correct and incorrect responses, infers the probability of each test 
taker having mastered each sub-skill” (Buck & Tatsuoka, 1998, pp. 126-127). By contrast, LLTM 
divides unidimensional IRT-based item difficulty parameters into multiple categorical cognitive sub-
skills (Leighton & Gierl, 2007).  
     CDA models have also been classified on the basis of their parameter estimation methods. A 
number of models (such as DINA and FM) employ Markov Chain Monte Carlo (MCMC) methods 
based on Bayesian principles. Others use marginal maximum likelihood (MML) estimations. The use 
of MCMC in parameter estimation approximates distribution features, leaving some residuals, which 
does not typically occur in MML.  
 

The Fusion Model 
 

    The fusion model (FM) is an IRT model developed by Hartz (2002) for CDA purposes. IRT models 
delineate the probability of test taker j answering item i to be a function of both test taker’s ability and 
item parameters (i.e., difficulty, discrimination, and guessing). As FM specifies, performance on test 
items is based on test taker’s mastery of a set of cognitive sub-skills. Relations between identified sub-
skills and test items are specified in a matrix called the Q-matrix (Tatsuoka, 1983). For example, given 
i test items (i = 1, 2, 3, 4…, i) that evaluate k sub-skills (K = 1, 2,…, k), the Q-matrix would appear as: 
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Q = {qik}. When sub-skill k is required by item 1, then qik = 1, and when the sub-skill is not required, 
then qik = 0. Table 1 represents a hypothetical Q-matrix: 
 

Table 1. Illustration of a Q-matrix of four items by three sub-skills. 
 

	

Items Identified sub-skills 
 a b c 
1 0 0 1 
2 1 1 0 
3 1 0 0 
4 0 1 1 

   
 
    The items in Table 1 measure three sub-skills. For example, item 1 assesses sub-skill c only. For an 
identified sub-skill to be measured accurately, it should be measured by at least two or three test items 
(Hartz, Roussos, & Stout, 2002), but each item should seek to test a relatively small number of sub-
skills rather than a large array of sub-skills.   
    FM includes the test taker parameter θj, which denotes the overall test taker ability. This parameter is 
not specified by the Q-matrix, so it is only recognized in the FM, and is expressed as Equation 1: 

           
                                                      (1) 

where    
Xij = response of test taker j to test item i (0 = incorrect; 1 = correct); 
αj = vector of sub-skill mastery (if test taker j has mastered sub-skill k, then αjk = 1, and if not, 
then αjk = 0); 
θj = overall ability of test taker j, which is not specified by the Q-matrix; unlike the ability 
parameters of IRT, which have continuous θ indices (i.e., data that can hold any value, ranging 
from minus infinity to infinity), the θj index in the FM is a categorical parameter (i.e., data that 
can only take certain values) (Lee & Sawaki, 2009); -∞ < θj < +∞; 
π*

i = probability of correctly applying the required sub-skills in answering the ith item when the 
test taker has mastered all relevant sub-skills, or the difficulty of item i according to the Q-
matrix; this index ranges from 0 to 1;  
r*

ik =                  , the discrimination parameter of item i and skill k; it ranges from 0 to 1. For 
each item i, there are k sub-skill values of r*

ik and ki is the number of sub-skills specified in the 
Q-matrix as being required to answer item i correctly;   
qik = specification of mastery of sub-skill k which is required to answer item i;  
ci = the degree of reliance of item performance on θj in addition to the sub-skills identified in 
the Q-matrix. This index ranges from 0 to 3. 

= probability of correctly applying the sub-skills which are not specified in the Q-matrix. 
This index is estimated though the Rasch model.  

 
    The sub-skills should be identified on the basis of “test specifications, content domain theories, 
analysis of item content, think-aloud protocol analysis of test takers’ test taking process, and other 
relevant research results” (Lee & Sawaki, 2009, p. 176). An equally useful method of defining the Q-
matrix is iterative runs of the FM to specify the matrix (Sawaki et al., 2009). That is, a panel of experts 
develops a few rival Q-matrices, whose specified sub-skills will have commonalities and points of   
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departure depending on their decisions. The researcher should consider multiple factors to partial out 
rival Q-matrices and retain the best fitting matrix.  
    Among the aforementioned FM parameters π*

i , r*
ik and ci have important roles because they not only 

provide diagnostic information about each test taker and item, but also highlight the properties of the 
Q-matrix and the misspecifications observed. An ideal matrix produces estimates r*

ik below .90, 
indicating that the item discriminates masters from non-masters sufficiently; values below 0.50 are 
regarded as sub-skills highly necessary to answer the question correctly (Roussos, Xueli, & Stout, 2003). 
In addition, high π*

i indices are desirable, as they indicate that masters have a higher probability of 
successfully applying the sub-skills required by that item. The parameter ci is a “completeness index” 
ranging from 0 to 3 (Montero, Monfils, Wang, Yen, & Julian, 2003). It will approach 3 if the sub-skills 
required to successfully answer the item are fully specified in the Q-matrix, and 0 if they are not specified 
in the matrix.  
    Recently, a few informative textbooks on CDA models have been published by educational 
researchers, including Rupp, Templin, and Henson’s (2010) and Tatsuoka’s (2009) works.    
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